Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
BMC Infect Dis ; 21(1): 712, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1394421

RESUMEN

BACKGROUND: The COVID-19 pandemic has severely disrupted supply chains for many types of Personal Protective Equipment (PPE), particularly surgical N95 filtering facepiece respirators (FFRs; "masks"). As a consequence, an Emergency Use Authorization (EUA) from the FDA has allowed use of industrial N95 respirators and importation of N95-type masks manufactured to international standards; these include KN95 masks from China and FFP2 masks from the European Union. METHODS: We conducted a survey of masks in the inventory of major academic medical centers in Boston, MA to determine provenance and manufacturer or supplier. We then assembled a testing apparatus at a university laboratory and performed a modified test of filtration performance using KCl and ambient particulate matter on masks from hospital inventories; an accompanying website shows how to build and use the testing apparatus. RESULTS: Over 100 different makes and models of traditional and nontraditional filtering facepiece respirators (N95-type masks) were in the inventory of surveyed U.S. teaching hospitals as opposed to 2-5 models under normal circumstances. A substantial number of unfamiliar masks are from unknown manufacturers. Many are not correctly labelled and do not perform to accepted standards and a subset are obviously dangerous; many of these masks are likely to be counterfeit. Due to the absence of publicly available information on mask suppliers and inconsistent labeling of KN95 masks, it is difficult to distinguish between legitimate and counterfeit products. CONCLUSIONS: Many FFRs available for procurement during the COVID-19 pandemic do not provide levels of fit and filtration similar to those of N95 masks and are not acceptable for use in healthcare settings. Based on these results, and in consultation with occupational health officers, we make six recommendations to assist end users in acquiring legitimate products. Institutions should always assess masks from non-traditional supply chains by checking their markings and manufacturer information against data provided by NIOSH and the latest FDA EUA Appendix A. In the absence of verifiable information on the legitimacy of mask source, institutions should consider measuring mask fit and filtration directly. We also make suggestions for regulatory agencies regarding labeling and public disclosure aimed at increasing pandemic resilience.


Asunto(s)
COVID-19 , Exposición Profesional , Dispositivos de Protección Respiratoria , Humanos , Máscaras , Pandemias/prevención & control , SARS-CoV-2 , Ventiladores Mecánicos
2.
Front Digit Health ; 32021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1201353

RESUMEN

The disruption of conventional manufacturing, supply, and distribution channels during the COVID-19 pandemic caused widespread shortages in personal protective equipment (PPE) and other medical supplies. These shortages catalyzed local efforts to use nontraditional, rapid manufacturing to meet urgent healthcare needs. Here we present a crisis-responsive design framework designed to assist with product development under pandemic conditions. The framework emphasizes stakeholder engagement, comprehensive but efficient needs assessment, rapid manufacturing, and modified product testing to enable accelerated development of healthcare products. We contrast this framework with traditional medical device manufacturing that proceeds at a more deliberate pace, discuss strengths and weakness of pandemic-responsive fabrication, and consider relevant regulatory policies. We highlight the use of the crisis-responsive framework in a case study of face shield design and production for a large US academic hospital. Finally, we make recommendations aimed at improving future resilience to pandemics and healthcare emergencies. These include continued development of open source designs suitable for rapid manufacturing, education of maker communities and hospital administrators about rapidly-manufactured medical devices, and changes in regulatory policy that help strike a balance between quality and innovation.

3.
Sci Rep ; 11(1): 2051, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1041626

RESUMEN

The COVID-19 pandemic has led to widespread shortages of personal protective equipment (PPE) for healthcare workers, including of N95 masks (filtering facepiece respirators; FFRs). These masks are intended for single use but their sterilization and subsequent reuse has the potential to substantially mitigate shortages. Here we investigate PPE sterilization using ionized hydrogen peroxide (iHP), generated by SteraMist equipment (TOMI; Frederick, MD), in a sealed environment chamber. The efficacy of sterilization by iHP was assessed using bacterial spores in biological indicator assemblies. After one or more iHP treatments, five models of N95 masks from three manufacturers were assessed for retention of function based on their ability to form an airtight seal (measured using a quantitative fit test) and filter aerosolized particles. Filtration testing was performed at a university lab and at a National Institute for Occupational Safety and Health (NIOSH) pre-certification laboratory. The data demonstrate that N95 masks sterilized using SteraMist iHP technology retain filtration efficiency up to ten cycles, the maximum number tested to date. A typical iHP environment chamber with a volume of ~ 80 m3 can treat ~ 7000 masks and other items (e.g. other PPE, iPADs), making this an effective approach for a busy medical center.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Respiradores N95/virología , Equipo de Protección Personal/virología , Esterilización/métodos , COVID-19/epidemiología , COVID-19/prevención & control , Equipo Reutilizado/estadística & datos numéricos , Humanos , Respiradores N95/provisión & distribución , Pandemias/prevención & control , Equipo de Protección Personal/provisión & distribución , Dispositivos de Protección Respiratoria , SARS-CoV-2/aislamiento & purificación , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA